Finite presentability of arithmetic groups over global function fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finiteness properties of soluble arithmetic groups over global function fields

Let G be a Chevalley group scheme and B ≤ G a Borel subgroup scheme, both defined over Z. Let K be a global function field, S be a finite non-empty set of places over K , and OS be the corresponding S–arithmetic ring. Then, the S– arithmetic group B(OS) is of type F |S|−1 but not of type FP |S| . Moreover one can derive lower and upper bounds for the geometric invariants Σ(B(OS)). These are sha...

متن کامل

Arithmetic over Function Fields

These notes accompany lectures presented at the Clay Mathematics Institute 2006 Summer School on Arithmetic Geometry. The lectures summarize some recent progress on existence of rational points of projective varieties defined over a function field over an algebraically closed field.

متن کامل

Finiteness properties of arithmetic groups over function fields

We determine when an arithmetic subgroup of a reductive group defined over a global function field is of type FP∞ by comparing its large-scale geometry to the large-scale geometry of lattices in real semisimple Lie groups.

متن کامل

On Generators of Arithmetic Groups over Function Fields

Fq = the finite field with q elements; throughout the paper q is assumed to be odd. A = Fq[T ], T indeterminate. F = Fq(T ) = the fraction field of A. |F | = the set of places of F . For x ∈ |F |, Fx = the completion of F at x. Ox = {z ∈ Fx | ordx(z) ≥ 0} = the ring of integers of Fx. Fx = the residue field of Ox; deg(x) = [Fx : Fq]. For 0 = f ∈ A, deg(f) = the degree of f as a polynomial in T ...

متن کامل

Heisenberg groups over finite fields

ing this computation, for given k-vectorspace V with non-degenerate alternating form 〈, 〉, put a Lie algebra [2] structure h on V ⊕ k by Lie bracket [v ⊕ z, v′ ⊕ z′] = 0⊕ 〈v, v′〉 In exponential coordinates on H, the exponential map h→ H with H ≈ V ⊕ k is notated exp(v ⊕ z) = v ⊕ z with Lie group structure on H by (v ⊕ z) · (v′ ⊕ z′) = (v + v′)⊕ (z + z′ + 〈v, v ′〉 2 ) (exponential coordinates in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1987

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500017934